Tropical rainforest

A tropical rainforest is an ecosystem type that occurs roughly within the latitudes 28 degrees north or south of the equator (in the equatorial zone between the Tropic of Cancer and Tropic of Capricorn). This ecosystem experiences high average temperatures and a significant amount of rainfall. Rainforests can be found in Asia, Australia, Africa, South America, Central America, Mexico and on many of the Pacific, Caribbean, and Indian Ocean islands. Within the World Wildlife Fund's biome classification, tropical rainforests are thought to be a type of tropical wet forest (or tropical moist broadleaf forest) and may also be referred to as lowland equatorial evergreen rainforest.[3]

Contents

Overview

Tropical rainforests are characterized in two words: warm and wet. Mean monthly temperatures exceed 18 °C (64 °F) during all months of the year.[4] Average annual rainfall is no less than 67 inches (30 m) and can exceed 400 inches (1,016 cm), although it typically lies between 175 cm (69 in) and 200 cm (79 in).[5] . This high level of precipitation often results in poor soils due to leaching of soluble nutrients.

Tropical rainforests are unique in the high levels of biodiversity they exhibit. Around 40% to 75% of all biotic species are indigenous to the rainforests.[6] Rainforests are home to half of all the living animal and plant species on the planet.[7] Two-thirds of all flowering plants can be found in rainforests.[5] A single hectare of rainforest may contain 42,000 different species of insect, up to 807 trees of 313 species and 1,500 species of higher plants.[5] Tropical rainforests have been called the "jewels of the Earth" and the "world's largest pharmacy", because over one quarter of natural medicines have been discovered within them.[8] It is likely that there may be many millions of species of plants, insects and microorganisms still undiscovered in tropical rainforests.

Tropical rainforests are among the most threatened ecosystems globally due to large-scale fragmentation due to human activity. Habitat fragmentation caused by geological processes such as volcanism and climate change occurred in the past, and have been identified as important drivers of speciation.[9] However, fast human driven habits destruction is suspected to be one of the major causes of species extinction. Tropical rain forests have been subjected to heavy logging and agricultural clearance throughout the 20th century, and the area covered by rainforests around the world is rapidly shrinking.[10][11]

History

Tropical rainforests have existed on Earth for hundreds of millions of years. Most tropical rainforests today are on fragments of the Mesozoic era supercontinent of Gondwana.[12] The separation of the landmass resulted in a great loss of amphibian diversity while at the same time the drier climate spurred the diversification of reptiles.[9] The division left tropical rainforests located in five major regions of the world: tropical America, Africa, Southeast Asia, Madagascar, and New Guinea, with smaller outliers in Australia.[12] However, the specifics of the origin of rainforests remain uncertain due to an incomplete fossil record.

Types of tropical rainforest

Several types of forest comprise the general tropical rainforest biome:

Forest structure

Rainforests are divided into different strata, or layers, with vegetation organized into a vertical pattern from the top of the soil to the canopy [15] Each layer is a unique biotic community containing different plants and animals adapted for life in that particular strata. Only the emergent layer is unique to tropical rainforests, while the others are also found in temperate rainforests.

Forest floor

The forest floor, the bottom-most layer, receives only 2% of the sunlight. Only plants adapted to low light can grow in this region. Away from riverbanks, swamps and clearings, where dense undergrowth is found, the forest floor is relatively clear of vegetation because of the low sunlight penetration. This more open quality permits the easy movement of larger animals such as: ungulates like the okapi (Okapia johnstoni), tapir (Tapirus sp.), Sumatran rhinoceros (Dicerorhinus sumatrensis), and apes like the western lowland gorilla (Gorilla gorilla), as well as many species of reptiles, amphibians, and insects. The understory also contains decaying plant and animal matter, which disappears quickly, because the warm, humid conditions promote rapid decay. Many forms of fungi growing here help decay the animal and plant waste.

Understory layer

The understory layer lies between the canopy and the forest floor. The understory is home to a number of birds, small mammals, insects, reptiles, and predators. Examples include leopard (Panthera pardus), piranha (Pygocentrus nattereri), poison dart frogs (Dendrobates sp.), ring-tailed coati (Nasua nasua), boa constrictor (Boa constrictor), and many species of Coleoptera.[5] The vegetation at this layer generally consists of shade-tolerant shrubs, herbs, small trees, and large woody vines which climb into the trees to capture sunlight. Only about 5% of sunlight breaches the canopy to arrive at the understory causing true understory plants to seldom grow to 3 m (10 feet). As an adaptation to these low light levels, understory plants have often evolved much larger leaves. Many seedlings that will grow to the canopy level are in the understory

Canopy layer

The canopy is the primary layer of the forest forming a roof over the two remaining layers. It contains the majority of the largest trees, typically 30–45 m in height. Tall, broad-leaved evergreen trees are the dominant plants. The densest areas of biodiversity are found in the forest canopy, as it often supports a rich flora of epiphytes, including orchids, bromeliads, mosses, and lichens. These epiphytic plants attach to trunks and branches and obtain water and minerals from rain and debris that collects on the supporting plants. The fauna is similar to that found in the emergent layer, but more diverse. It is suggested that the total arthropod species richness of the tropical canopy might be as high as 20 million.[16] Other species habituating this layer include many avian species such as the yellow-casqued wattled hornbill (Ceratogymna elata), collared sunbird (Anthreptes collaris), African gray parrot (Psitacus erithacus), keel-billed toucan (Ramphastos sulfuratus), scarlet macaw (Ara macao) as well as other animals like the spider monkey (Ateles sp.), African giant swallowtail (Papilio antimachus), three-toed sloth (Bradypus tridactylus), kinkajou (Potos flavus), and tamandua (Tamandua tetradactyla).[5]

Emergent layer

The emergent layer contains a small number of very large trees, called emergents, which grow above the general canopy, reaching heights of 45–55 m, although on occasion a few species will grow to 70–80 m tall.[17][18] Some examples of emergents include: Balizia elegans, Dipteryx panamensis, Hieronyma alchorneoides, Hymenolobium mesoamericanum, Lecythis ampla and Terminalia oblonga.[19] These trees need to be able to withstand the hot temperatures and strong winds that occur above the canopy in some areas. Several unique faunal species inhabit this layer such as the crowned eagle (Stephanoaetus coronatus), the king colobus (Colobus polykomos), and the large flying fox (Pteropus vampyrus).[5]

However, stratification is not always clear. Rainforests are dynamic and many changes affect the structure of the forest. Emergent or canopy trees collapse, for example, causing gaps to form. Openings in the forest canopy are widely recognized as important for the establishment and growth of rainforest trees. It’s estimated that perhaps 75% of the tree species at La Selva Biological Station, Costa Rica are dependent on canopy opening for seed germination or for growth beyond sapling size, for example.[20]

Ecology

Climate

Most tropical rainforests are located around or near the equator, therefore having what is called an equatorial climate characterized by three major climatic parameters: temperature, rainfall, and dry season intensity [21] Other parameters that effect tropical rainforests are carbon dioxide concentrations, solar radiation, and nitrogen availability. In general, climatic patterns consist of warm temperatures and high annual rainfall. However, the abundance of rainfall changes throughout the year creating distinct wet and dry seasons. Rainforests are classified by the amount of rainfall received each year, which has allowed ecologists to define differences in these forests that look so similar in structure. According to Holdbridge’s classification of tropical ecosystems, true tropical rainforests have an annual rainfall greater than 800 cm and annual temperature greater than 24 degrees Celsius. However, most lowland tropical rainforests can be classified as tropical moist or wet forests, which differ in regards to rainfall. Tropical rainforest ecology- dynamics, composition, and function- are sensitive to changes in climate especially changes in rainfall.[21] The climate of these forests is controlled by a band of clouds called the Intertropical Convergence Zone located near the equator and created by the convergence of the trade winds from the northern and southern hemispheres. The position of the band varies seasonally, moving north in the northern summer and south in the northern winter, and ultimately controlling the wet and dry seasons in the tropics.[22] These regions have experienced strong warming at a mean rate of 0.26 degrees Celsius per decade which coincides with a global rise in temperature resulting from the anthropogenic inputs of greenhouse gases into the atmosphere. Studies have also found that precipitation has declined and tropical Asia has experienced an increase in dry season intensity where as Amazonia has no significant pattern change in precipitation or dry season.[21] Additionally, El Niño-Southern Oscillation events drive the interannual climatic variability in temperature and precipitation and result in drought and increased intensity of the dry season. As anthropogenic warming increases the intensity and frequency of ENSO will increase, leaving tropical rainforest regions susceptible to stress and increased mortality of trees.[21]

Soils

Soil types

Soil types are highly variable in the tropics and are the result of a combination of several variables such as climate, vegetation, topographic position, parent material, and soil age[23] Most tropical soils are characterized by significant leaching and poor nutrients; however there are some areas that contain fertile soils. Soils throughout the tropical rainforests fall into two classifications which include the ultisols and oxisols. Ultisols are known as well weathered, acidic red clay soils, deficient in major nutrients such as calcium and potassium. Similarly, oxisols are acidic, old, typically reddish, highly weathered and leached, however are well drained compared to ultisols. The clay content of ultisols is high, making it difficult for water to penetrate and flow through. The reddish color of both soils is the result of heavy heat and moisture forming oxides of iron and aluminum, which are insoluble in water and not taken up readily by plants.

Soil chemical and physical characteristics are strongly related to above ground productivity and forest structure and dynamics. The physical properties of soil control the tree turnover rates where as chemical properties such as available nitrogen and phosphorus control forest growth rates.[24] The soils of the eastern and central Amazon as well as the Southeast Asian Rainforest are old and mineral poor where as the soils of the western Amazon (Ecuador and Peru) and volcanic areas of Costa Rica are young and mineral rich. Primary productivity or wood production is highest in western Amazon and lowest in eastern Amazon which contains heavily weathered soils classified as oxisols.[23] Additionally, Amazonian soils greatly weathered, making them devoid of minerals like phosphorus, potassium, calcium, and magnesium, which come from rock sources. However, not all tropical rainforests occur on nutrient poor soils, but on nutrient rich floodplains and volcanic soils located in the Andean foothills, and volcanic areas of Southeast Asia, Africa, and Central America.[25]

Nutrient recycling

The soils of tropical rainforests are characterized by rapid recycling of fallen leaves and other organic matter due to the large biomass of the rainforest. This high rate of decomposition is the result of phosphorus levels in the soils, precipitation, high temperatures and the extensive microorganism communities.[26] In addition to the bacteria and other microorganisms, there are an abundance of other decomposers such as fungi and termites that aid in the process as well. Nutrient recycling is important because below ground resource availability controls the above ground biomass and community structure of tropical rainforests. These soils are typically phosphorus limited, which inhibits net primary productivity or the uptake of carbon.[23] The soil contains tiny microbial organisms such as bacteria, which breakdown leaf litter and other organic matter into inorganic forms of carbon usable by plants through a process called decomposition. During the decomposition process the microbial community is respiring, taking up oxygen and releasing carbon dioxide. The decomposition rate can be evaluated by measuring the uptake of oxygen.[26] High temperatures and precipitation increase decomposition rate, which allows plant litter to rapidly decay in tropical regions, releasing nutrients that are immediately taken up by plants through surface or ground waters. The seasonal patterns in respiration are controlled by leaf litter fall and precipitation, the driving force moving the decomposable carbon from the litter to the soil. Respiration rates are highest early in the wet season because the recent dry season results in a large percentage of leaf litter and thus a higher percentage of organic matter being leached into the soil.[26]

Buttress roots

A common feature of many tropical rainforests is the distinct buttress roots of trees. Instead of penetrating to deeper soil layers, buttress roots create a wide spread root network at the surface for more efficient uptake of nutrients in a very nutrient poor and competitive environment. Most of the nutrients within the soil of a tropical rainforest occur near the surface because of the rapid turnover time and decomposition of organisms and leaves.[27] Because of this, the buttress roots occur at the surface so the trees can maximize uptake and actively compete with the rapid uptake of other trees. These roots also aid in water uptake and storage, increase surface area for gas exchange, and collect leaf litter for added nutrition.[27] Additionally, these roots reduce soil erosion and maximize nutrient acquisition during heavy rains by diverting nutrient rich water flowing down the trunk into several smaller flows while also acting as a barrier to ground flow. Also, the large surface areas these roots create provide support and stability to rainforests trees, which commonly grow to significant heights. This added stability allows these trees to withstand the impacts of severe storms, thus reducing the occurrence of fallen trees.[27]

Carbon flux

Carbon flux can be defined as the exchange of carbon dioxide between the atmosphere and a sink. Net primary productivity, an important ecological concept, can be defined as the amount of carbon retained in plant biomass over time.[26] It is also the difference between gross primary productivity and autotrophic respiration and is used to measure the amount of carbon within a rainforest. The importance of rainforests in the carbon cycle depends on the above and below ground (root systems and soil organic matter) biomass, amount of carbon stored, and the rate at which it is fixed by plants through photosynthesis.[26] Compared to other forest types, tropical rainforests are known to be significant carbon sinks, absorbing 4.8 billion tons of carbon dioxide every year. The rainforests of Amazonia contain between 14 and 40 kilograms of carbon per square meter and the soils contain 27% of the carbon in roots, microorganisms, soil fungi and plants.[26]

Forest succession

Succession is an ecological process that changes the biotic community structure over time towards a more stable, diverse community structure after an initial disturbance to the community. The initial disturbance is often a natural phenomenon or human caused event. Natural disturbances include hurricanes, volcanic eruptions, river movements or an event as small as a fallen tree that creates gaps in the forest. In tropical rainforests, these same natural disturbances have been well documented in the fossil record, and are credited with encouraging speciation and endemism.[9]

Geography

South and Central America

Africa

Asia

Australasia and Oceania

Biodiversity and speciation

Tropical rainforests exhibit a vast diversity in plant and animal species. The root for this remarkable speciation has been a query of scientists and ecologists for years. A number of theories have been developed for why and how the tropics can be so diverse.

Interspecific competition hypothesis

The Interspecific Competition Hypothesis suggests that because of the high density of species with similar niches in the tropics and limited resources available, they must do one of two things: become extinct or find a new niche. Direct competition will often lead to one species dominating another by some advantage, ultimately driving it to extinction. Niche partitioning is the other option for a species. This is the separation and rationing of necessary resources by utilizing different habitats, food sources, cover or general behavioral differences. A species with similar food items but different feeding times is an example of niche partitioning.[9]

Pleistocene refugia

The Theory of Pleistocene Refugia was developed by Jürgen Haffer in 1969 with his article Speciation of Amazonian Forest Birds. Haffer proposed the explanation for speciation was the product of rainforest patches being separated by stretches of non forest vegetation during the last glacial period. He called these patches of rainforest areas refuges and within these patches allopatric speciation occurred. With the end of the glacial period and increase in atmospheric humidity, rainforest began to expand and the refuges reconnected.[28] This theory has been the subject of debate. Scientists are still skeptical if whether or not this theory is legitimate. Genetic evidence suggests speciation had occurred in certain taxa 1-2 million years ago, preceding the Pleistocene.[29]

Human dimensions

Habitation

Tropical rainforests are unable to support human life.[30] Food resources within the forest are extremely dispersed due to the high biological diversity and what food does exist is largely restricted to the canopy and requires considerable energy to obtain. Some groups of hunter-gatherers have exploited rainforest on a seasonal basis but dwelt primarily in adjacent savanna and open forest environments where food is much more abundant. Other peoples described as rainforest dwellers are hunter-gatherers who subsist in large part by trading high value forest products such as hides, feathers, and honey with agricultural people living outside the forest.[30]

Indigenous peoples

A variety of indigenous people live within deforested patches of rainforest, or subsist as part time farmer supplemented in large part by trading high value forest products such as hides, feathers, and honey with agricultural people living outside the forest.[30] People have inhabited the rainforests for thousands of years and have remained so elusive that only recently have some tribes been discovered. On January 18, 2007, FUNAI reported also that it had confirmed the presence of 67 different uncontacted tribes in Brazil, up from 40 in 2005. With this addition, Brazil has now overtaken the island of New Guinea as the country having the largest number of uncontacted tribes.[31] The province of Irian Jaya or West Papua in the island of New Guinea is home to an estimated 44 uncontacted tribal groups.[32]

The pygmy peoples are hunter-gatherer groups living in equatorial rainforests characterized by their short height (below one and a half meters, or 59 inches, on average). Amongst this group are the Efe, Aka, Twa, Baka, and Mbuti people of Central Africa. However, the term pygmy is considered pejorative so many tribes prefer not to be labeled as such.[33]

Some notable indigenous peoples of the Americas, or Amerindians, include the Huaorani, Ya̧nomamö, and Kayapo people of the Amazon. The traditional agricultural system practiced by tribes in the Amazon is based on swidden cultivation (also known as slash-and-burn or shifting cultivation) and is considered a relatively benign disturbance.[34][35] In fact, when looking at the level of individual swidden plots a number of traditional farming practices are considered beneficial. For example, the use of shade trees and fallowing all help preserve soil organic matter, which is a critical factor in the maintenance of soil fertility in the deeply weathered and leached soils common in the Amazon.[36]

There is a diversity of forest people in Asia, including the Lumad peoples of the Philippines and the Penan and Dayak people of Borneo. The Dayaks are a particularly interesting group as they are noted for their traditional headhunting culture. Fresh human heads were required to perform certain rituals such as the Iban “kenyalang” and the Kenyah “mamat”.[37] Pygmies who live in Southeast Asia are, amongst others, referred to as “Negrito”.

Resources

Cultivated foods and spices

Yam, Coffee, chocolate, banana, mango, papaya, macadamia, avocado, and sugarcane all originally came from tropical rainforest and are still mostly grown on plantations in regions that were formerly primary forest. In the mid-1980s and 90s, 40 million tons of bananas were consumed worldwide each year, along with 13 million tons of mango. Central American coffee exports were worth US$3 billion in 1970. Much of the genetic variation used in evading the damage caused by new pests is still derived from resistant wild stock. Tropical forests have supplied 250 cultivated kinds of fruit, compared to only 20 for temperate forests. Forests in New Guinea alone contain 251 tree species with edible fruits, of which only 43 had been established as cultivated crops by 1985.[38]

Ecosystem services

In addition to extractive human uses rain forests also have non-extractive uses that are frequently summarized as ecosystem services. Rain forests play an important role in maintaining biological diversity, sequestering & storing carbon, global climate regulation, disease control, and pollination.[39]

Tourism

Despite the negative effects of tourism in the tropical rainforests, there are also several important positive effects.

Conservation

Threats

Mining and drilling

Deposits of precious metals (gold, diamonds, coltan) and fossil fuels (oil and natural gas) occur underneath rainforests globally. These resources are important to developing nations and their extraction is often given priority to encourage economic growth. Mining and Drilling can require large amounts of land development, directly causing deforestation. In Ghana, a West African nation, deforestation from decades of mining activity left about 12% of the country's original rainforest intact.[42]

Conversion to agricultural land

With the invention of agriculture, humans were able to clear sections of rainforest to produce crops, converting it to open farmland. Such people, however, obtain their food primarily from farm plots cleared from the forest [30][43] and hunt and forage within the forest to supplement this.The issue arising is between the independent farmer providing for his family and the needs and wants of the globe as a whole. This issue has seen little improvement because no plan has been established for all parties to be aided.[44]

Agriculture on formerly forested land is not without difficulties. Rainforest soils are often thin and leached of many minerals, and the heavy rainfall can quickly leach nutrients from area cleared for cultivation. People such as the Yanomamo of the Amazon, utilize slash-and-burn agriculture to overcome these limitations and enable them to push deep into what were previously rainforest environments. However, these are not rainforest dwellers, rather they are dwellers in cleared farmland[30][43] that make forays into the rainforest. Up to 90% of the typical Yanamomo diet comes from farmed plants.[43]

Some action has been taken by suggesting fallow periods of the land allowing secondary forest to grow and replenish the soil.[45] Beneficial practices like soil restoration and conservation can benefit the small farmer and allow better production on smaller parcles of land.

Climate change

The tropics have a large part in reducing atmospheric carbon dioxide. The tropics (most notably the Amazon rainforest) are called carbon sinks. As the main carbon reducer is destroyed atmospheric temperature rises. Climate change has a seen a drastic shift with the destruction of the rainforest. A simulation was performed in which all rainforest in Africa were removed. The simulation showed an increase in atmospheric temperature by 2.5 to 5 Kelvin.[46]

Protection

Efforts to protect and conserve tropical rainforest habitats are diverse and widespread. Tropical rainforest conservation ranges from strict preservation of habitat to finding sustainable management techniques for people living in tropical rainforests. International policy has also introduced a market incentive program called Reducing Emissions from Deforestation and Forest Degradation (REDD) for companies and governments to outset their carbon emissions through financial investments into rainforest conservation.[47]

Academic resources

Further reading

References

  1. ^ NASA.gov
  2. ^ ScienceDaily.com
  3. ^ Olson, David M. et al. (2001); Terrestrial Ecoregions of the World: A New Map of Life on Earth, BioScience, Vol. 51, No. 11., pp. 933-938.
  4. ^ Susan Woodward. Tropical broadleaf Evergreen Forest: The rainforest. Retrieved on 2008-03-14.
  5. ^ a b c d e f Newman, Arnold. The Tropical Rainforest : A World Survey of Our Most Valuable Endangered Habitat : With a Blueprint for Its Survival. New York: Checkmark, 2002. Print.
  6. ^ "Rainforests.net - Variables and Math". http://www.rainforests.net/variables.htm. Retrieved 2009-01-04. 
  7. ^ The Regents of the University of Michigan. The Tropical Rain Forest. Retrieved on 2008-03-14.
  8. ^ Rainforests at Animal Center
  9. ^ a b c d Sahney, S., Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica" (PDF). Geology 38 (12): 1079–1082. doi:10.1130/G31182.1. http://geology.geoscienceworld.org/cgi/content/abstract/38/12/1079. 
  10. ^ Brazil: Deforestation rises sharply as farmers push into Amazon, The Guardian, September 1, 2008
  11. ^ China is black hole of Asia's deforestation, Asia News, 24 March 2008
  12. ^ a b Corlett, R., and R. Primack. "Tropical Rainforests and the Need for Cross-continental Comparisons." Trends in Ecology & Evolution 21.2 (2006): 104-10. Print.
  13. ^ Bruijnzeel, L. A., and E. J. Veneklaas. "Climatic Conditions and Tropical Montane Forest Productivity: The Fog Has Not Lifted Yet." Ecology 79.1 (1998): 3. Print.
  14. ^ Phillips, O., A.H. Gentry, C. Reynel, P. Wilkin, and C. Galvez-Durand B. "Quantitative Ethnobotany and Amazonian Conservation." Conservation Biology 8.1 (1994): 225-48. Print.
  15. ^ Tropical Rain Forest Ecosystems, Elsevier Scientific, 1983.
  16. ^ Erwin, T.L. (1982) Tropical forests: Their richness in Coleoptera and other arthropod species. The Coleopterists Bulletin, 36, 74-75
  17. ^ Bourgeron, Patrick S. (1983). "Spatial Aspects of Vegetation Structure". In Frank B. Golley. Tropical Rain Forest Ecosystems. Structure and Function. Ecosystems of the World (14A ed.). Elsevier Scientific. pp. 29–47. ISBN 0-444-41986-1. 
  18. ^ "Sabah". Eastern Native Tree Society. http://www.nativetreesociety.org/worldtrees/sea_ei/malaysia/sabah2005.htm. Retrieved 2007-11-14. 
  19. ^ King, David A., and Deborah A. Clark. "Allometry of Emergent Tree Species from Saplings to Above-canopy Adults in a Costa Rican Rain Forest." Journal of Tropical Ecology 27.06 (2011): 573-79. Print.
  20. ^ Tropical Rainforest Gaps and Tree Species Diversity, Annual Review of Ecology and Systematics, 1987.
  21. ^ a b c d Yadvinder Malhi and James Wright. “Spatial patterns and recent trends in the climate of tropical rainforest regions”. The Royal Society Biological Sciences. 359. (2004): 311-329.
  22. ^ http://www.srh.noaa.gov/jetstream/tropics/itcz.htm
  23. ^ a b c L. E. O. C. Aragao. “Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils”. Biogeosciences. 6.(2009): 2759–2778.
  24. ^ Moreira, A Et Al. "Soil Fertility, Mineral Nitrogen, and Microbial Biomass in Upland Soils of the Central Amazon under Different Plant Covers." Communications in Soil Science and Plant Analysis. 42. (2011): 694-705.
  25. ^ http://www.mongabay.com/
  26. ^ a b c d e f Cory C. Cleveland and Alan R. Townsend. “Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere”. PNAS. 103. (2006): 10316-10321.
  27. ^ a b c Young, Tang et al. "Buttress Trees Elevate Soil Heterogeneity and Regulate Seedling Diversity in a Tropical Rainforest." Plant and Soil. 338. (2010): 301-309.
  28. ^ J. Haffer, Science 165, 131 (1969)
  29. ^ C. Monitz et al, Annu. Rev. Ecol. Syst 31, 533 (2000)
  30. ^ a b c d e Bailey, R.C., Head, G., Jenike, M., Owen,B., Rechtman, R., Zechenter, E., 1989 "Hunting and gathering in tropical rainforest: is it possible." American Anthropologist, 91:1 59-82
  31. ^ Brazil sees traces of more isolated Amazon tribes
  32. ^ BBC: First contact with isolated tribes?
  33. ^ Forest peoples in the central African rain forest: focus on the pygmies.
  34. ^ Use of tropical rainforest by native Amazonians, BioScience, 1990.
  35. ^ How human activities disturb the nutrient cycles of a tropical rainforest in Amazonia, Ambio, 1981.
  36. ^ Designing Agricultural Ecosystems for the Humid Tropics, Annual Review of Ecology and Systematics, 1986.
  37. ^ Dayaks and forests of interior Borneo, Expedition, 1988.
  38. ^ Myers, N. 1985. The primary source W. W. Norton and Co., New York, pp. 189-193.
  39. ^ Foley, J.A. et al. (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology 2007; 5(1): 25—32.
  40. ^ Stronza, A. and Gordillo, J. 2008. Community views of ecotourism: Redefining benefits. Annals of Tourism Research, 35(2) [CrossRef], [Web of Science ®]
  41. ^ Fotiou, S. (2001, October). Environmental Impacts of Tourism. Retrieved November 30, 2007, from Uneptie.org
  42. ^ Ismi, A. (2003), ‘Canadian mining companies set to destroy Ghana’s forest reserves’, Canadian Centre for Policy Alternatives Monitor, Ontario, Canada.
  43. ^ a b c Philip L. Walker, Larry Sugiyama, Richard Chacon. (1998) '"Diet, Dental Health, and Cultural Change among Recently Contacted South American Indian Hunter-Horticulturalists" in Human Dental Development, Morphology, and Pathology. University of Oregon Anthropological Papers, No . 54
  44. ^ Tomich, P. T., Noordwijk, V. M., Vosti, A. S., Witcover, J. (1998). Agricultural development with rainforest conservation: methods for seeking best bet alternatives to slash-and-burn, with applications to Brazil and Indonesia [Electronic version]. Agricultural Economics, 19, 159±174.
  45. ^ de Jong et al., 2001 W. de Jong, L. Freitas, J. Baluarte, P. van de Kop, A. Salazar, E. Inga, W. Melendez and C. Germaná, Secondary forest dynamics in the Amazon floodplain in Peru. Forest Ecology and Management, 150 (2001), pp. 135–146. Article | PDF (107 K) | | View Record in Scopus | | Cited By in Scopus (13)
  46. ^ Semazzi, F. H., Song, Y. (2001). A GCM study of climate change induced by deforestation in Africa [Electronic Version]. Climate Research,17, 169-182.
  47. ^ Varghese, Paul (Aug 2009). "An Overview of REDD, REDD Plus and REDD Readiness". http://www.rightsandresources.org/documents/files/doc_1220.pdf. Retrieved 2009-11-23. 
  48. ^ Elsevier. "Agricultural and Forest Meteorology". http://www.sciencedirect.com/science/journal/01681923. Retrieved 20 January 2009. 
  49. ^ Oxford University Press. "Annals of botany". http://aob.oxfordjournals.org/. Retrieved 20 January 2009. 
  50. ^ Springer. "Biodiversity and Conservation". http://www.springerlink.com/content/100125/?p=279ec1ca0a954b9bac5ab06fa6ea8ecc&pi=0. Retrieved 20 January 2009. 
  51. ^ Elsevier. "Biological Conservation". http://www.sciencedirect.com/science/journal/00063207. Retrieved 20 January 2009. 
  52. ^ "Diversity and Distributions". http://www3.interscience.wiley.com/journal/118507128/home. Retrieved 20 January 2009. 
  53. ^ Elsevier. "Ecological Indicators". http://www.sciencedirect.com/science/journal/1470160X. Retrieved 20 January 2009. 
  54. ^ John Wiley & Sons. "Ecological Management & Restoration". http://www.wiley.com/bw/journal.asp?ref=1442-7001. Retrieved 20 January 2009. 
  55. ^ BioOne. "Ecoscience". http://www.bioone.org/perlserv/?request=get-archive&issn=1195-6860. Retrieved 20 January 2009. 
  56. ^ Cambridge University Press. "Journal of Tropical Ecology". http://journals.cambridge.org/action/displayJournal?jid=TRO. Retrieved 20 January 2009. 
  57. ^ Elsevier. "Palaeogeography, Palaeoclimatology, Palaeoecology". http://www.sciencedirect.com/science/journal/00310182. Retrieved 20 January 2009. 
  58. ^ Taylor & Francis. "Studies on Neotropical Fauna and Environment". http://www.informaworld.com/smpp/title~content=t713817190~db=all. Retrieved 20 January 2009. 

External links